S
S
Study Notes
Search
K
Comment on page

valid-parenthesis-string

Problem

Problem Description

Given a string containing only three types of characters: '(', ')' and '*', write a function to check whether this string is valid. We define the validity of a string by these rules:
Any left parenthesis '(' must have a corresponding right parenthesis ')'.
Any right parenthesis ')' must have a corresponding left parenthesis '('.
Left parenthesis '(' must go before the corresponding right parenthesis ')'.
'*' could be treated as a single right parenthesis ')' or a single left parenthesis '(' or an empty string.
An empty string is also valid.
Example 1:
Input: "()"
Output: True
Example 2:
Input: "(*)"
Output: True
Example 3:
Input: "(*))"
Output: True
Note:
The string size will be in the range [1, 100].

Solution

For valid parenthesis problem, left parenthesis must equal to right parenthesis, and left must be before right parenthesis.
in this problem, add one more character *, can be left parenthesis, or empty, or right parenthesis.
Need to consider one case, that all ) have matches, and only ( and * position, for example, "**((*" invalid, * position is in the left of (.
  1. 1.
    Record ( (left) and * (star) counts and index.
  2. 2.
    when encounter ), check ( and * counts,
    • if left.count == 0 && star.count == 0, means current ) is left most parenthesis,
      nothing matches, return false;
    • if left.count > 0, then left.count--;
    • if left.count == 0, then star.count--;
  3. 3.
    when encounter (, add left.count++, left.index=i (current index).
  4. 4.
    when encounter *, add star.count++, star.index=i (current index).
  5. 5.
    after iterate through String s, check
    • if left.count > star.count, return false. (no enough * to match ().
    • iterate (, if left.index > star.index, return false (* in left of (, not match, i.e. "*("))
    • after compare all ( and * index, return true
  6. 6.
    return true.
For example:
Valid Parenthesis String

Complexity Analysis

Time Complexity: O(N)
Space Complexity: O(N)
  • N - the length of String s

Code

iterative solution
class Solution {
public boolean checkValidString(String s) {
// keep track of `*` index
Stack<Index> stars = new Stack<>();
// keep track of `(` index
Stack<Index> left = new Stack<>();
int len = s.length();
for (int i = 0; i < len; i++) {
char ch = s.charAt(i);
if (ch == ')') {
if (stars.isEmpty() && left.isEmpty()) return false;
// left.count > 0, left.count--
if (left.size() > 0) left.pop();
else {
// star.count > 0, star.count--
stars.pop();
}
} else if (ch == '*') {
stars.push(new Index(i));
} else {
left.push(new Index(i));
}
}
if (left.size() > stars.size()) return false;
while (!left.isEmpty()) {
if (left.pop().index > stars.pop().index) return false;
}
return true;
}
class Index {
int index;
public Index(int index) {
this.index = index;
}
}
}
recursive solution
class Solution {
public boolean checkValidString(String s) {
return helper(s, 0, 0);
}
private boolean helper(String s, int index, int count) {
if (index == s.length()) {
return count == 0;
}
if (count < 0) return false;
char curr = s.charAt(index);
if (curr == '(') {
return helper(s, index + 1, count + 1);
} else if (curr == ')') {
return helper(s, index + 1, count - 1);
} else {
// if `*`, check 3 cases, `*` as empty char, or `*` as `(`, or `*` as `)`
return helper(s, index + 1, count)
|| helper(s, index + 1, count + 1)
|| helper(s, index + 1, count -1);
}
}
}