Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.
Example 1:
Input: [3,2,1,5,6,4] and k = 2
Output: 5
Example 2:
Input: [3,2,3,1,2,4,5,5,6] and k = 4
Output: 4
Note:
You may assume k is always valid, 1 ≤ k ≤ array's length.
时间复杂度:O(nlogn) - n 是数组长度。空间复杂度:O(1) - 原数组排序,没有用到额外空间
解法二 - 小顶堆(Heap)
可以维护一个大小为K的小顶堆,堆顶是最小元素,当堆的size > K 的时候,删除堆顶元素. 扫描一遍数组,最后堆顶就是第K大的元素。 直接返回。
复杂度分析
时间复杂度:O(n * logk) , n is array length
空间复杂度:O(k)
跟排序相比,以空间换时间。
解法三 - Quick Select
Quick Select 类似快排,选取pivot,把小于pivot的元素都移到pivot之前,这样pivot所在位置就是第pivot index 小的元素。 但是不需要完全给数组排序,只要找到当前pivot的位置是否是在第(n-k)小的位置,如果是,找到第k大的数直接返回。
具体步骤:
1. 在数组区间随机取`pivot index = left + random[right-left]`.
2. 根据pivot 做 partition,在数组区间,把小于pivot的数都移到pivot左边。
3. 得到pivot的位置 index,`compare(index, (n-k))`.
a. index == n-k -> 找到第`k`大元素,直接返回结果。
b. index < n-k -> 说明在`index`右边,继续找数组区间`[index+1, right]`
c. index > n-k -> 那么第`k`大数在`index`左边,继续查找数组区间`[left, index-1]`.
例子,【3,2,3,1,2,4,5,5,6], k = 4
如下图: