Study Notes
  • Kuma Blog
  • AI
    • AI-Resources
    • AI-books
    • Prompts
      • Prompts Free Courses
  • Movies
    • 2024
    • 2024
    • 2024
  • Google
    • chunked-palindrome
  • Setup
    • How to add a new user into Ubuntu and setup ssh key?
    • How to set up VSCode remote server connect with browser with Docker
  • kubernetes
  • Books
    • Designing-Data-Intensive-Applications
      • 第一章 — 可靠性,可扩展性,可维护性的应用程序(Reliable, Scalable, and Maintainable Applications)
    • System-Performance
      • Design-Data-Intensive-Application
      • Chapter 2: Methodologies
  • Languages
    • japanese
      • japanese-week
  • Leetcode
    • 30DayChallenge
      • LRU-cache
      • backspace-string-compare
      • binary-tree-maximum-path-sum
      • bitwise-and-number-range
      • check-string-valid-sequence-from-root-to-leaves-path-in-bst
      • construct-binary-search-tree-from-preorder-traversal
      • contiguous-array
      • counting-elements
      • diameter-of-binary-tree
      • first-unique-number
      • group-anagrams
      • jump-game
      • last-stone-weight
      • leftmost-column-with-at-least-a-one
      • longest-common-subsequect
      • maximal-square
      • maximum-subarray
      • middle-of-the-linked-list
      • min-stack
      • minimun-path-sum
      • move-zeroes
      • perform-string-shifts
      • product-of-array-except-itself
      • search-in-rotated-sorted-array
      • subarray-sum-equals-k
      • valid-parenthesis-string
    • English Solution
      • 1168.optimize-water-distribution-in-a-village-en
      • 1171.remove-zero-sum-consecutive-nodes-from-linked-list-en
      • 1177.can-make-palindrome-from-substring-en
      • 1343.number-of-avg-subarr-sizek-greater-or-equal-threshold
      • 1345.jump-game-iv
      • 25.reverse-nodes-in-k-groups-en
      • 474.ones-and-zeros-en
      • 53.maximum-sum-subarray-en
      • 547.friend-circles-en
      • 79.word-search-en
    • May2020Challenge
      • check-if-straight-line
      • cousins-in-binary-tree
      • find-town-judge
      • first-bad-version
      • first-unique-character-in-a-string
      • flood-fill
      • implement-trie
      • jewels-and-stones
      • majority-element
      • maximum-sum-circular-subarray
      • number-complement
      • odd-even-linkedlist
      • ransom-note
      • remove-k-digits
      • single-element-in-sorted-array
      • valid-perfect-square
    • python
      • 000017-Letter-Combinations-of-a-Phone-Number
      • 000032-Longest-Valid-Parentheses
      • 000033-Search-in-Rotated-Sorted-Array
      • 000046-Permutations
      • 000074-Search-a-2D-Matrix
      • 000077-Combinations
      • 000081-Search-in-Rotated-Sorted-Array-II
      • 000137-single-number-ii
      • 000139-Word-Break
      • 000207-courses-schedule
      • 000209-Minimum-Size-Subarray-Sum
      • 000376-wiggle-subsequence
      • 000445-Add-Two-Numbers-II
      • 000486-Predict-the-Winner
      • 000518-Coin-Change-II
      • 000673-Number-of-Longest-Increasing-Subsequence
      • 000688-Knight-Probability-in-Chessboard
      • 000735-Asteroid-Collision
      • 000852-Peak-Index-in-a-Mountain-Array
      • 859-Buddy-Strings
      • 000864-Shortest-Path-to-Get-All-Keys
      • 000920-Number-of-Music-Playlists
      • 001218-Longest-Arithmetic-Subsequence-of-Given-Difference
      • 001235-Maximum-Profit-in-Job-Scheduling
      • 001493-Longest-Subarray-of 1-After-Deleting-One-Element
      • Problem
      • 002024-Maximize-the-Confusion-of-an-Exam
      • 2305-Fair-Distribution-of-Cookies
      • 002616-Minimize-the-Maximum-Difference-of-Pairs
      • 00802-Find-Eventual-Safe-States
    • 中文版解题
      • 1147.longest-chunked-palindrome-decomposition-cn
      • 1168.optimize-water-distribution-in-a-village-cn
      • 1171.remove-zero-sum-consecutive-nodes-from-linked-list-cn
      • 1177.can-make-palindrome-from-substring-cn
      • 215.kth-largest-element-in-an-array-cn
      • 25.reverse-nodes-in-k-groups-cn
      • 30.substring-with-concatenation-of-all-words-cn
      • 4.median-of-two-sorted-array-cn
      • 460.LFU-cache-cn
      • 474.ones-and-zeros-cn
      • 53.maximum-sum-subarray-cn
      • 79.word-search-cn
  • Readings
    • 2020
      • Design-Data-Intensive-Application
      • 亲爱的提奥
      • 理想国
      • 贫穷的本质
Powered by GitBook
On this page
  • Problem
  • Problem Description
  • Solution
  • Solution 1 -- Java LinkedHashMap
  • Complexity Analysis
  • Code
  • Solution 2 -- double linkedlist + hashmap

Was this helpful?

  1. Leetcode
  2. 30DayChallenge

LRU-cache

Previous30DayChallengeNextbackspace-string-compare

Last updated 5 years ago

Was this helpful?

Problem

Problem Description

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

The cache is initialized with a positive capacity.

Follow up:
Could you do both operations in O(1) time complexity?

Example:

LRUCache cache = new LRUCache( 2 /* capacity */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1);       // returns 1
cache.put(3, 3);    // evicts key 2
cache.get(2);       // returns -1 (not found)
cache.put(4, 4);    // evicts key 1
cache.get(1);       // returns -1 (not found)
cache.get(3);       // returns 3
cache.get(4);       // returns 4

Solution

Solution 1 -- Java LinkedHashMap

Make use of Java library, LinkedHashMap, ordered and keep track of map size.

  • when insert into new (key,value) into map, check map already reach capacity or not:

    • if reach capacity, then remove last value from map, insert (key, value) into head of map

    • if not reach capacity, insert into head of map

  • when fetch value by key, check whether key in map or not:

    • if key not in map, return -1

    • if key in map, get value by key, remove current key from map, insert current key into head of map

Complexity Analysis

Time Complexity: O(N)

Space Complexity: O(M)

  • N - N operation times

  • M - M is the capacity

Code

class LRUCache {
    private LinkedHashMap<Integer, Integer> map;
    private int capacity;
    public LRUCache(int capacity) {
        map = new LinkedHashMap<>(capacity);
        this.capacity = capacity;
    }

    public int get(int key) {
        if (!map.containsKey(key)) return -1;
        int value = map.remove(key);
        map.put(key, value);
        return value;
    }

    public void put(int key, int value) {
        if (map.containsKey(key)) {
            map.remove(key);
        } else if (map.size() >= capacity) {
            map.remove(map.keySet().iterator().next());
        }
        map.put(key, value);
    }
}

Solution 2 -- double linkedlist + hashmap

public class LRUCache {
    private Map<Integer, DoubleLinkedList> map;
    private int capacity;
    private DoubleLinkedList head;
    private DoubleLinkedList tail;
    public LRUCache(int capacity) {
        map = new HashMap<>(capacity);
        this.capacity = capacity;
    }

    public int get(int key) {
        // if key not in map, return -1
        if (!map.containsKey(key)) return -1;
        // if key in map, remove current node, insert current node into head
        DoubleLinkedList node = map.get(key);
        remove(node);
        setHead(node);
        return node.val;
    }

    public void put(int key, int value) {
        // if key in map, remove current node, and insert into head
        if (map.containsKey(key)) {
            DoubleLinkedList node = map.get(key);
            remove(node);
            node.val = value;
            setHead(node);
        } else {
            // key not in map, check current map is already reach capacity,
            // if yes, then remove last node, and insert current node into head
            // if not, insert current node into head
            // put current node into map
            DoubleLinkedList newNode = new DoubleLinkedList(key, value);
            if (map.size() >= capacity) {
                map.remove(tail.key);
                remove(tail);
            } 
            setHead(newNode);
            map.put(key, newNode);
        }
    }

    private void remove(DoubleLinkedList node) {
        if (node.pre != null) {
            node.pre.next = node.next;
        } else {
            head = node.next;
        }
        if (node.next != null) {
            node.next.pre = node.pre;
        } else {
            tail = node.pre;
        }
    }

    private void setHead(DoubleLinkedList node) {
        node.pre = null;
        node.next = head;
        if (head != null) {
            head.pre = node;
        }
        head = node;
        if (tail == null) {
            tail = head;
        }
    }

    class DoubleLinkedList {
        int key;
        int val;
        DoubleLinkedList pre;
        DoubleLinkedList next;
        public DoubleLinkedList(int key, int val) {
            this.key = key;
            this.val = val;
        }
    }
}
LRC Cache