chunked-palindrome

Chunked Palindrome

题目描述

Normal palindrome is defined as a string that reads the same backwards as forwards, for example "abccba".
Chunked palindrome is defined as a string that you can split into chunks and it will form a palindrome.
For example, "volvo". You can split it into (vo)(l)(vo). Let A = "vo", B = "l", so the original string is ABA which is a palindrome.

Given a string str, find the maximum number of chunks we can split that string to get a chuncked palindrome.

Example 1:

Input: "valve"
Output: 1
Explanation: You can't split it into multiple chunks so just return 1 (valve)
Example 2:

Input: "voabcvo"
Output: 3
Explanation: (vo)(abc)(vo)
Example 3:

Input: "vovo"
Output: 2
Explanation: (vo)(vo)
Example 4:

Input: "volvolvo"
Output: 5
Explanation: (vo)(l)(vo)(l)(vo)
Example 5:

Input: "volvol"
Output: 2
Explanation: (vol)(vol)
Example 6:

Input: "aaaaaa"
Output: 6
Explanation: We can split it into (aaa)(aaa), but the optimal split should be (a)(a)(a)(a)(a)(a)
Questions from the same interview:

Product of K consecutive numbers

思路

给定一个字符串,让求出最多可以切成分块的回文,每一个切分可以是一个子字符串,或者单个字符。

例如, "aaaaaa", 可以切分成 "aaa)(aaa)" - 2, 但是这里要求最多分块, 这样就是最多的"(a)(a)(a)(a)(a)(a)" - 6

解法一,

分析, 满足回文字符串的要求是,从前读和从后读是一样的, 例如, "aba", "anna","madam"

那么这里就可以分别从前(l)和从后(r)扫描,lr 记录前后扫描的index, 然后用pre_l and pre_r 记录前一次扫描到的可以分块的回文位置,

如果子字符串相同(substr(pre_l, l + 1) 这里包含边界),结果 +2,继续扫描。

如果最后剩余一个(奇数个chunk), 那么直接结果 +1, 否则偶数个chunk, 直接返回结果

例如:"volvolvo"

复杂度分析

时间复杂度:O(N^2) - N is the s length, s.substring()时间复杂度是O(n)

空间复杂度:O(1) - 没有额外的空间

解法二

从解法一中我们可以看到palindome 左右对称, 所以可以从左和右,用递归求解。

如下图例子, 可以从左起子字符串匹配最右起的子字符串。绿色框框,如果匹配, 递归的计算最长的回文,即每次碰到回文就计算 +2, 直到最后字符串中没有匹配的回文,或者是匹配到最后, 退出, 返回结果。

例如:"volvolvo"

代码 (Java)

解法一

class ChunkedPalindrom {
    public static int maxChunkedPalindrome2(String s) {
        if (s == null || s.length() == 0) return 0;
        int l = 0;
        int r = s.length() - 1;
        int max = 0;
        int preL = l;
        int preR = r;
        while (l < r) {
          String prefix = s.substring(preL, l + 1); // include right
          String sufix = s.substring(r, preR + 1);
          if (prefix.equals(sufix)) {
            preL = l + 1;
            preR = r - 1;
            max += 2;
          }
          l++;
          r--;
        }
        if (preL <= preR) max++;
        System.out.println("max chunk palindrom: " + max);
        return max;
      }
  }

解法二

class ChunkedPalindrome {
    public static int maxChunkedPalindrome(String s) {
        if (s == null || s.length() == 0) return 0;
        return helper(s, 0, 0, s);
      }

      private static int helper(String curr, int count, int len, String s) {
        // no substring left, return current count
        if (curr == null || curr.isEmpty()) return count;
        if (curr.length() <= 1) {
          if (count != 0 && s.length() - len <= 1) {
            return count + 1;
          } else return 1;
        }
        int currLen = curr.length();
        // get left and right substring and compare
        for (int i = 0; i < currLen / 2; i++) {
          String left = curr.substring(0, i + 1);
          String right = curr.substring(currLen - 1 - i, currLen);
          if (left.equals(right)) {
            // if left and right match, then continue match the rest substring (s - left - right)
            return helper(curr.substring(i + 1, currLen - 1 - i),
                count + 2, len + (i + 1) * 2, s);
          }
        }
        return count + 1;
      }
  }

参考(References)

Last updated