In the computer world, use restricted resource you have to generate maximum benefit is what we always want to pursue.
For now, suppose you are a dominator of m 0s and n 1s respectively. On the other hand, there is an array with strings consisting of only 0s and 1s.
Now your task is to find the maximum number of strings that you can form with given m 0s and n 1s. Each 0 and 1 can be used at most once.
Note:
The given numbers of 0s and 1s will both not exceed 100
The size of given string array won't exceed 600.
Example 1:
Input: Array = {"10", "0001", "111001", "1", "0"}, m = 5, n = 3
Output: 4
Explanation: This are totally 4 strings can be formed by the using of 5 0s and 3 1s, which are “10,”0001”,”1”,”0”
Example 2:
Input: Array = {"10", "0", "1"}, m = 1, n = 1
Output: 2
Explanation: You could form "10", but then you'd have nothing left. Better form "0" and "1".
classOnesAndZerosBFRecursive {publicintfindMaxForm2(String[] strs,int m,int n) {returnhelper(strs,0, m, n); }privateinthelper(String[] strs,int idx,int j,int k) {if (idx ==strs.length) return0;// count current idx string number of zeros and onesint[] counts =countZeroOnes(strs[idx]);// if j >= count0 && k >= count1, take current index stringint takeCurrStr = j - counts[0] >=0&& k - counts[1] >=0?1+helper(strs, idx +1, j - counts[0], k - counts[1]):-1;// don't take current index string strs[idx], continue next stringint notTakeCurrStr =helper(strs, idx +1, j, k);returnMath.max(takeCurrStr, notTakeCurrStr); }privateint[] countZeroOnes(String s) {int[] res =newint[2];for (char ch :s.toCharArray()) { res[ch -'0']++; }return res; }}
Python3 code
classSolution:deffindMaxForm(self,strs: List[str],m:int,n:int) ->int:return self.helper(strs, m, n, 0)defhelper(self,strs,m,n,idx):if idx ==len(strs):return0 take_curr_str =-1 count0, count1 = strs[idx].count('0'), strs[idx].count('1')if m >= count0 and n >= count1: take_curr_str =max(take_curr_str, self.helper(strs, m - count0, n - count1, idx +1) +1) not_take_curr_str = self.helper(strs, m, n, idx +1)returnmax(take_curr_str, not_take_curr_str)
解法二 - 记忆 + 递归
Java code
classOnesAndZerosMemoRecur {publicintfindMaxForm4(String[] strs,int m,int n) {returnhelper(strs,0, m, n,newint[strs.length][m +1][n +1]); }privateinthelper(String[] strs,int idx,int j,int k,int[][][] memo) {if (idx ==strs.length) return0;// check if already calculated, return valueif (memo[idx][j][k] !=0) {return memo[idx][j][k]; }int[] counts =countZeroOnes(strs[idx]);// if satisfy condition, take current string, strs[idx], update count0 and count1int takeCurrStr = j - counts[0] >=0&& k - counts[1] >=0?1+helper(strs, idx +1, j - counts[0], k - counts[1], memo):-1;// not take current stringint notTakeCurrStr =helper(strs, idx +1, j, k, memo);// always keep track the max value into memory memo[idx][j][k] =Math.max(takeCurrStr, notTakeCurrStr);return memo[idx][j][k]; }privateint[] countZeroOnes(String s) {int[] res =newint[2];for (char ch :s.toCharArray()) { res[ch -'0']++; }return res; }}
Python3 code - (TLE)
classSolution:deffindMaxForm(self,strs: List[str],m:int,n:int) ->int: memo ={k:[[0]*(n+1) for _ inrange(m+1)] for k inrange(len(strs)+1)}return self.helper(strs, 0, m, n, memo)defhelper(self,strs,idx,m,n,memo):if idx ==len(strs):return0if memo[idx][m][n] !=0:return memo[idx][m][n] take_curr_str =-1 count0, count1 = strs[idx].count('0'), strs[idx].count('1')if m >= count0 and n >= count1: take_curr_str =max(take_curr_str, self.helper(strs, idx +1, m - count0, n - count1, memo) +1) not_take_curr_str = self.helper(strs, idx +1, m, n, memo) memo[idx][m][n] =max(take_curr_str, not_take_curr_str)return memo[idx][m][n]
解法三 - 3D DP
Java code
classOnesAndZeros3DDP {publicintfindMaxForm(String[] strs,int m,int n) {int l =strs.length;int [][][] d =newint[l +1][m +1][n +1];for (int i =0; i <= l; i ++){int [] nums =newint[]{0,0};if (i >0){ nums =countZeroOnes(strs[i -1]); }for (int j =0; j <= m; j ++){for (int k =0; k <= n; k ++){if (i ==0) { d[i][j][k] =0; } elseif (j >= nums[0] && k >= nums[1]){ d[i][j][k] =Math.max(d[i -1][j][k], d[i -1][j - nums[0]][k - nums[1]] +1); } else { d[i][j][k] = d[i -1][j][k]; } } } }return d[l][m][n]; }}