An array arr a mountain if the following properties hold:
arr.length >= 3 There exists some i with 0 < i < arr.length - 1 such that: arr[0] < arr[1] < ... < arr[i - 1] < arr[i] arr[i] > arr[i + 1] > ... > arr[arr.length - 1] Given a mountain array arr, return the index i such that arr[0] < arr[1] < ... < arr[i - 1] < arr[i] > arr[i + 1] > ... > arr[arr.length - 1].
You must solve it in O(log(arr.length)) time complexity.
Example 1:
Input: arr = [0,1,0] Output: 1 Example 2:
Input: arr = [0,2,1,0] Output: 1 Example 3:
Input: arr = [0,10,5,2] Output: 1
Constraints:
3 <= arr.length <= 105 0 <= arr[i] <= 106 arr is guaranteed to be a mountain array.
Solution
It requires solves this problem in O(log(arr.length)), intuitive thought of binary search.
Binary search
classSolution:defpeakIndexInMountainArray(self,arr: List[int])->int: l, r =0,len(arr)-1while l <= r: m =(l+r)//2if arr[m-1]< arr[m]and arr[m+1]< arr[m]:return melif arr[m+1]> arr[m]: l = m+1else: r = m-1return l
class Solution:
def peakIndexInMountainArray(self, arr: List[int]) -> int:
if not arr:
return -1
for i in range(1, len(arr)-1):
if arr[i-1] < arr[i] and arr[i+1] < arr[i]:
return i
return -1